# MONDAY, FEBRUARY 18th

## **DO NOW**

• In your notebooks, to be checked, solve this problem...

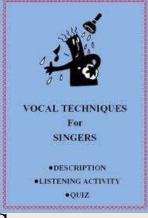
There are about 30 inches of Mercury
(inHg) in 1 bar and about 15 pounds per
square inch (psi) in 1 bar. These are units
of Pressure!

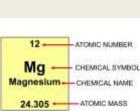
#### Know:

30 inHg = 1bar 15psi = 1bar

**Asked:** How many pounds per square inch are in 2 bar?

### **TODAY'S PLAN**


- 1. Do and review the **DO NOW** and **Qualitative Prompt (QP)!** 
  - Today's **QP** = <u>QP QUIZ PREP</u> = <u>Using your Jot-Down Notes</u> <u>SKETCH Bohr Models for the</u> <u>following Elements; Nitrogen (7P, 7N, 7E), Argon (18P, 22N, 18E), and</u> <u>Potassium (19P, 20N, 19E)!</u>
- 2. Open books, WORK on today's **AO!**
- 3. \***HW** = Read & Do Pg. 188-189!


### TODAY'S ACADEMIC OBJECTIVE

Today you will use information about a Chemical Element for use in BRINGING a 2-D Atomic Model into three dimensions!

# SCIENCE QUIZALERT

- Students, listen UP!!!
  - We will be having VOCAL QUIZ soon to help us LEARN the Chemical Symbols for some COMMON Chemical Elements!
  - This quiz will require you to STUDY your Periodic Tables!
  - You are responsible for learning the NAME that goes with these 12 Chemical Element SYMBOLS!
    - Mn, U, W, Pt, Ag, Au, Hg, Sn, Pb, I, Kr, Rn!





# SCIENCE QUIZALERT



| 1                         |                                | Periodic Table of the Elements |                                   |                                |                            |                                  |                              |                                 |                                   |                               |                            |                               | 18                         |                              |                                  |                              |                         |
|---------------------------|--------------------------------|--------------------------------|-----------------------------------|--------------------------------|----------------------------|----------------------------------|------------------------------|---------------------------------|-----------------------------------|-------------------------------|----------------------------|-------------------------------|----------------------------|------------------------------|----------------------------------|------------------------------|-------------------------|
| H<br>Hydrogen             | 2                              |                                |                                   |                                |                            |                                  |                              |                                 |                                   |                               |                            | 13                            | 14                         | 15                           | 16                               | 17                           | He<br>Hellum<br>4.003   |
| Li<br>Lithium<br>6.941    | Be<br>Berythum<br>9.012        |                                |                                   |                                |                            |                                  |                              |                                 |                                   |                               |                            | B<br>Boron<br>10.811          | Carbon<br>12.011           | 7<br>N<br>Nitrogen<br>14.007 | Oxygen<br>15.999                 | F<br>Fluorine<br>18.998      | Ne<br>Neon<br>20.180    |
| Na<br>Sodium<br>22.990    | Mg<br>Magnesium<br>24.305      | 3                              |                                   | 5                              | 6                          | 7                                | 8                            | 9                               | 10                                | 11                            | 12                         | Al<br>Aluminum<br>26.982      | Si<br>Silcon<br>28.086     | P<br>Phosphorus              | S<br>Sulfur<br>32.066            | CI<br>Chlorina<br>35.453     | Ar<br>Argon<br>39.948   |
| K<br>Potassium<br>39.098  | Calctum<br>40.078              | Sc<br>Scandium<br>44.956       | Ti<br>Titanium<br>47.967          | 23<br>V<br>Variadium<br>50.942 | Cr<br>Chromlum<br>51,996   | Mn<br>Manganese<br>54.938        | 26<br>Fe<br>Iron<br>55.845   | Co<br>Cobalt<br>58.733          | Ni<br>Nickel<br>58.693            | Cu<br>Copper<br>63.546        | Zn<br>Zinc                 | Ga.<br>Gallum<br>69,723       | Ge<br>Germanium<br>72.613  | As<br>Arsunic<br>74.922      | Se<br>Selentum<br>78.971         | Br<br>Bromine<br>79.504      | Kr<br>Krypton<br>83.798 |
| Rb<br>Rubildium<br>84.468 | Sr<br>Strontlum<br>87.62       | Y<br>Ytterlum<br>88.906        | Zr<br>Zirconium<br>91.224         | Nb<br>Niobtum<br>92.906        | Mo<br>Molfiedenum<br>95.95 | Tc<br>Tc<br>Technetium<br>98.907 | Ru<br>Ruthenium<br>101.07    | Rh<br>Rhodium                   | Pd<br>Palladium<br>106.42         | 47<br>Ag<br>Silver<br>107,868 | Cd<br>Cadmium<br>12414     | 49<br>In<br>Indium<br>II4.818 | 50<br>Sn<br>Tin<br>118.711 | Sb<br>Antimony<br>121.760    | Te<br>Tellurium<br>127.6         | 53<br>lodine<br>126.904      | Xe<br>Xenon<br>131.294  |
| Cs<br>Cestum<br>132.905   | 56<br>Ba.<br>Barlum<br>137,328 | 57-71<br>Lanthanides           | 72<br>Hf<br>Hafnlum<br>178.49     | Ta.<br>Tantalum<br>190.948     | Tungsten<br>183.84         | Re<br>Rhenium<br>186.207         | 76<br>Os<br>Osmlum<br>190.23 | Ir<br>Ir<br>Iridium<br>192.217  | Pt<br>Ptatinum<br>195.085         | 79<br>Au<br>Gold<br>196.967   | Hg<br>Mercury<br>200.592   | TI<br>Thallium<br>204.383     | 82<br>Pb<br>Lead<br>207.2  | Bi<br>Bismuth<br>208,990     | Po<br>Polentum<br>[208,982]      | At<br>Astatine<br>209.987    | Rn<br>Radon<br>222.018  |
| Fr<br>Francium<br>223.020 | 88<br>Ra<br>Radium<br>226.025  | 89-103<br>Actinides            | Rf<br>Rf<br>Retherbritan<br>[261] | Db<br>Dubnium<br>[262]         | Sg<br>Seaborgium<br>[266]  | Bh<br>Bohrlum<br>[264]           | Hs<br>Hs<br>Hassium<br>[269] | Mt<br>Mt<br>Meltnerlum<br>[268] | Ds<br>Ds<br>Darmataditum<br>[269] | Rg<br>Roentgenium<br>[272]    | Cn<br>Copernictum<br>[277] | Ununtrium<br>unknown          | FI<br>Filerovium<br>[289]  | Uup<br>Ununpentum<br>unknown | LV<br>Lv<br>Livermorium<br>[298] | Uus<br>Unurseptum<br>unknown |                         |

| 57        | 58        | 59           | 60      | 61         | 62      | 63        | 64         | 65        | 66          | 67      | 68      | 69      | 70        | 71         |
|-----------|-----------|--------------|---------|------------|---------|-----------|------------|-----------|-------------|---------|---------|---------|-----------|------------|
| La        | Ce        | Pr           | Nd      | Pm         | Sm      | Eu        | Gd         | ТЬ        | Dy          | Ho      | Er      | Tm      | Yb        | Lu         |
| Lanthanum | Certum    | Pranecdymium |         | Promethium |         |           | Gadolinium |           | Dysprosium  | Holmium | Erbium  | Thultum | Ytterblum | Lutetlum   |
| 138.905   | 140.116   | 140.908      | 144.243 | 144.913    | 150.36  | 151.964   | 157.25     | 158.925   | 162.500     | 164.930 | 167.259 | 168.934 | 173.055   | 174.967    |
| 89        | 90        | 91           | 92      | 93         | 94      | 95        | 96         | 97        | 98          | 99      | 100     | 101     | 102       | 103        |
| Ac        | Th        | Pa           | U       | Np         | Pu      | Am        | Cm         | Bk        | Cf          | Es      | Fm      | Md      | No        | Lr         |
| Actinium  | Thortum   | Protactinium | Urantum | Neptunium  |         | Americium |            | Berkeltum | Californium |         |         |         |           | Lawrenclum |
| 227.028   | 23/2.03/8 | 231.036      | 238.029 | 237.048    | 244.064 | 243.061   | 247.070    | 247.070   | 251.080     | [254]   | 257.095 | 258.1   | 259.101   | [262]      |

# SCIENCE QUIZALERT



| 1                         |                           | Periodic Table of the Elements |                                   |                                      |                               |                                  |                              |                                      |                                  |                               |                            |                             |                                | 18                           |                                  |                               |                         |
|---------------------------|---------------------------|--------------------------------|-----------------------------------|--------------------------------------|-------------------------------|----------------------------------|------------------------------|--------------------------------------|----------------------------------|-------------------------------|----------------------------|-----------------------------|--------------------------------|------------------------------|----------------------------------|-------------------------------|-------------------------|
| Hydrogan<br>1.008         | 2                         |                                |                                   |                                      |                               |                                  |                              |                                      |                                  |                               |                            | 13                          | 14                             | 15                           | 16                               | 17                            | He<br>Helium<br>4.003   |
| Li<br>Lithium<br>6.941    | Be<br>Beryllum<br>9.012   |                                |                                   |                                      |                               |                                  |                              |                                      |                                  |                               |                            | B<br>Boron<br>10.811        | Carbon<br>12011                | 7<br>N<br>Nitrogen<br>14.007 | Oxygen<br>15.999                 | F<br>Fluorine<br>18.998       | Ne<br>Neon<br>20.180    |
| Na<br>Sodium<br>22.990    | Mg<br>Magnesium<br>24.305 | 3                              | 4                                 | 5                                    | 9                             | 7                                | 8                            | 9                                    | 10                               | 11                            | 12                         | Al<br>Aluminum              | Si<br>Silcon<br>28.096         | P<br>Phosphorus<br>30.974    | S<br>Sulfur<br>37.066            | CI<br>Chiorine<br>35.453      | Ar<br>Argon<br>39,948   |
| K<br>Potassium<br>39.098  | Ca<br>Calctum             | Sc<br>Scandium<br>44.956       | Ti<br>Titanium                    | Vanadhum<br>50.942                   | Cr<br>Chrombar<br>51.994      | Mn<br>Manganese<br>54.938        | 26<br>Fe<br>Iron<br>55.845   | 27<br>Co<br>Cobalt<br>58.933         | Ni<br>Nickel<br>58.693           | Cu<br>Copper<br>63.546        | 30<br>Zn<br>Zinc<br>65.38  | Gallium<br>69.723           | Ge<br>Germanium<br>72.613      | As<br>Arsenic<br>74502       | Selentum<br>78.571               | Br<br>Bromine<br>79,904       | Kr<br>Krypton<br>83.798 |
| Rb<br>Rubidium<br>84.468  | Sr                        | Y<br>Ytterlum<br>88.906        | Zr<br>Zireconium<br>91.224        | Nb<br>Niobium<br>92.906              | Mo<br>Molfbdenum<br>95.95     | Tc<br>Tc<br>Technetium<br>98.907 | Ru<br>Ruthenium<br>101.07    | Rh<br>Rhodium<br>102.906             | Pd<br>Palladium<br>106.42        | 47<br>Ag<br>Silver<br>107.868 | Cd<br>Cadmium<br>112.414   | In<br>Indium                | 50<br>Sn<br>Tin<br>118.711     | Sb                           | Te<br>Tellurium<br>127.6         | 53<br>                        | Xe<br>Xenon<br>131.294  |
| Cs<br>Cestum<br>132.905   | Ba<br>Barham<br>137,328   | 57-71<br>Lanthanides           | Hf<br>Hzfnium<br>178.49           | Ta.<br>Tantalum<br>190.948           | 74<br>W<br>Tungsten<br>183.84 | Re<br>Rhentum<br>196.207         | 76<br>Os<br>Osmlum<br>190.23 | 77<br><b>Ir</b><br>Irdium<br>192.217 | Pt<br>Ptatinum<br>195.085        | 79<br>Au<br>Gold<br>196.967   | Hg<br>Mercury<br>200.592   | TI<br>Thallium<br>204.383   | 82<br>Pb<br>Lead<br>207.2      | Bi<br>Bramusth<br>202.789    | Po<br>Polonium<br>[208.982]      | At<br>Assestina<br>209.987    | Rn<br>Radon<br>222.018  |
| Fr<br>Francium<br>223.020 | Ra<br>Radium<br>226.025   | 89-103<br>Actinides            | Rf<br>Rf<br>Rutherfordum<br>[261] | 105<br><b>Db</b><br>Dubnium<br>[262] | Sg<br>Seaborgium<br>[266]     | Bh<br>Bh<br>Bohrlum<br>[264]     | HS<br>Hs<br>Hassium<br>[269] | Mt<br>Mt<br>Meltnerlum<br>[268]      | Ds<br>Ds<br>Durmstadium<br>[269] | Rg<br>Roentgenium<br>[272]    | Cn<br>Copernictum<br>[277] | Uut<br>Ununtrium<br>unknown | FI<br>FI<br>Flerovium<br>[289] | Uup<br>Ununpendum<br>unknown | LV<br>Lv<br>Livermorium<br>[298] | Uus<br>Ununsaptium<br>unknown |                         |

| 57      | 58      | 59                 | 60              | 61              | 62      | 63      | 64               | 65            | 66                | 67      | 68      | 69                | 70              | 71      |
|---------|---------|--------------------|-----------------|-----------------|---------|---------|------------------|---------------|-------------------|---------|---------|-------------------|-----------------|---------|
| La      | Ce      | Pr                 | Nd<br>Napdymlum | Pm              | Sm      | Eu      | Gd<br>Gadolinium | Tb<br>Terbium | Dy<br>Dysprosium  | Holmium | Er      | Tm                | Yb<br>Ytterblum | Lu      |
| 138.905 | 140.116 | 140.908            | 144.243         | 144.913         | 150.36  | 151.964 | 157.25           | 158.925       | 162.500           | 164.930 | 167.259 | 168,934           | 173.055         | 174.967 |
| 89      | 90      | 91                 | 92              | 93              | 94      | 95      | 96               | 97            | 98                | 99      | 100     | 101               | 102             | 103     |
| Ac      | Th      | Pa<br>Protactinium | Urantum         | Np<br>Nepturium |         | Am      |                  |               | Cf<br>Californium | Es      | Firm    | Md<br>Mendelevium | No<br>Nobalium  | Lr      |
| 227.028 | 232.038 | 231.036            | 238.029         |                 | 244.064 |         | 247.070          | 247.070       | 251.090           | [254]   | 257.095 | 258.1             | 259.101         | [262]   |

# TUESDAY, FEBRUARY 19th

## **DO NOW**

• In your notebooks, to be checked, solve this problem...

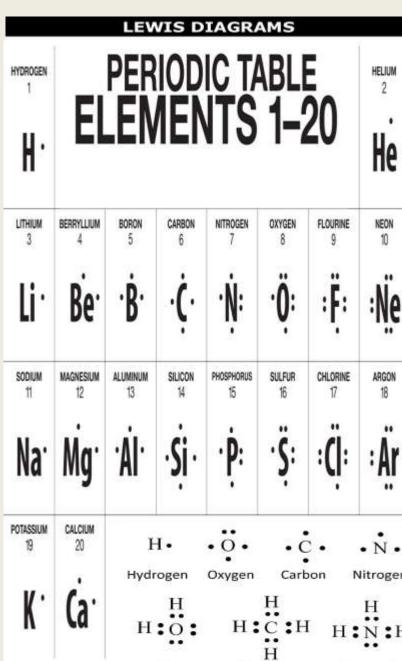
There are about 30 inches of Mercury
(inHg) in 1 bar and about 15 pounds per
square inch (psi) in 1 bar. These are units
of Pressure!

#### Know:

30 inHg = 1bar 15psi = 1bar

**Asked:** How many pounds per square inch (psi) are in 120 inches of Mercury (inHg)?

### **TODAY'S PLAN**


- 1. Do and review the **DO NOW** and **Qualitative Prompt** (**QP**)!
  - Today's **QP** = <u>QP QUIZ PREP</u> = <u>DRAW Bohr Models for the</u> <u>following IONS; Hydrogen (1P, 0N, 0E), Helium (2P, 2N, 0E), Fluoride</u> (9P, 10N, 10E), AND Oxide (8P, 8N, 10E)!
- 2. Open books, WORK on today's AO!
- 3. \***HW** = Study for VOCAL QUIZ!

### TODAY'S ACADEMIC OBJECTIVE

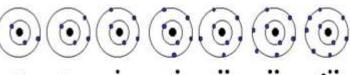
Today you will use information about a Chemical Element for use in BRINGING a 2-D Atomic Model into three dimensions!

# Lewis Dot Diagrams – Jot This Down!

- "Lewis Dot Diagrams" are another type of Atomic MODEL, specifically designed to just show the outer aka VALENCE Electrons in an Atom of an Element!
- Valence Electrons are involved in Chemical BONDING, so Lewis Diagrams can help in PREDICTING bonds!



## How To Draw Lewis Dot Diagrams – Jot This Down!


- To draw a Lewis Diagram, draw a BOHR MODEL of the Element and then place ONLY the outer Electrons as dots AROUND the Chemical Symbol of the Element!
  - NOTE: No more than 2 dots can go on the top, left, right, and bottom of an Element Symbol, and we MUST have at least 1 dot on the top, left, right, and bottom before placing 2 on any side!

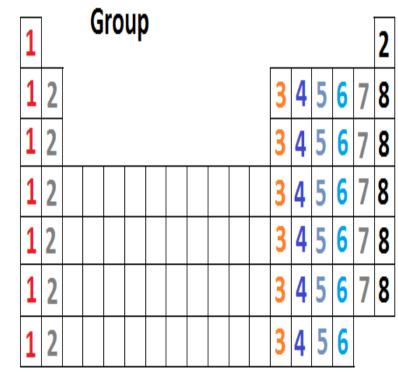
#### **LEWIS DIAGRAMS**

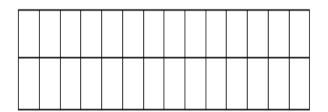
- Also known as Lewis dot diagrams
- Are a simplified version of Bohr-Rutherford diagrams.

#### **Lewis Dot Diagrams**

- Illustrates the number of valence electrons
  - Valence electrons = Number of electrons in outer shell
  - Placed around the symbol of the element
- Helps us determine how compounds are formed / how elements bond




| HYDROGEN<br>1   |                 | PER<br>FN  | IOD<br>IFN  | IC T/         | ABLI<br>1–2 | 50<br>E       | HELIUM<br>2 |
|-----------------|-----------------|------------|-------------|---------------|-------------|---------------|-------------|
| Н.<br>З         | BERRYLLIUM<br>4 | BORON<br>5 | CARBON<br>6 | NITROGEN 7    | OXYGEN<br>8 | FLOURINE<br>9 | He ·        |
| SODIUM 11       | Be*             | ·B·        | SILICON 14  | PHOSPHORUS 15 | O:          | CHLORINE      | :Ne:        |
| Na <sup>·</sup> | Mg.             | AI.        | ·Si ·       | · P:          | ٠Ş٠         | :Cİ:          | : A         |


### How To Draw Lewis Dot Diagrams – Jot This Down!

- SHORTCUT: For Groups #13-18 (Not Including Helium!) you can draw a Lewis Diagram even quicker by subtracting 10 from the Element's Group Number, and then placing the number you get (this number is the Element's number of VALENCE Electrons!) as dots around the Element's Symbol!
- For Elements in Groups (COLUMNS) #1-2, the Number of Valence Electrons is the SAME as the Group Number!

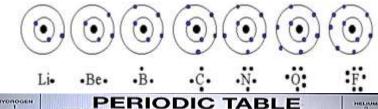
LEWIS DIAGRAMS

Valence Electrons in Each

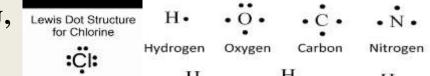




# Lewis Dot Diagrams – Jot This Down!


- "Lewis Dot Diagrams" are another type of Atomic MODEL, specifically designed to just show the outer aka VALENCE Electrons in an Atom of an Element!
- To draw a Lewis Diagram, draw a BOHR MODEL of the Element and then place ONLY the outer Electrons as dots AROUND the Chemical Symbol of the Element!
  - **NOTE**: No more than 2 dots can go on the top, left, right, and bottom of an Element Symbol, and we MUST have at least 1 dot on the top, left, right, and bottom before placing 2 on any side!
  - SHORTCUT: For Groups #13-18 (Not Including Helium!) you can draw a Lewis Diagram even quicker by subtracting 10 from the Element's Group Number, and then placing the number you get (this number is the Element's number of VALENCE Electrons!) as dots around the Element's Symbol!
  - NOTE: For Elements in Groups (COLUMNS) #1-2, the Number of Valence Electrons is the SAME as the Group Number!
- Valence Electrons are involved in Chemical BONDING, so Lewis Diagrams can help in PREDICTING bonds!

#### **LEWIS DIAGRAMS**


- Also known as Lewis dot diagrams
- Are a simplified version of Bohr-Rutherford diagrams.

#### **Lewis Dot Diagrams**

- Illustrates the number of <u>valence electrons</u>
  - Valence electrons = Number of electrons in outer shell
  - Placed around the symbol of the element
- Helps us determine how compounds are formed / how elements bond



| H    | EL  | LEN   | HET   | if s                             | 1=   | 20       | He ·  |
|------|-----|-------|-------|----------------------------------|------|----------|-------|
| Li · | Be. | · Ŗ · | -Ç-   | NITROGEN                         | · Q: | r E:     | ·Ne   |
| na.  | Mg. | ·AI-  | ·Si · | мновиновия<br>15<br>• <b>Р</b> : | · Š: | CHLONINE | Angon |



# THURSDAY, FEBRUARY 21st

### **DO NOW**

**Know:** Systems are a set of things that work together to accomplish a task or compose a structure.

**Asked:** Which is a system and one of its parts?

A: Protons and Electrons

**B:** Molecule and Electron

C: Molecule and Compound

#### **TODAY'S PLAN**

- 1. Do and review the **DO NOW** and **Qualitative Prompt (QP)!**
- Today's QP = QP QUIZ PREP =
   Using your Jot-Down Notes
   SKETCH Lewis Diagrams for the
   following Elements; Helium, Argon,
   and Potassium!
- 2. Open books, WORK on today's AO!
- 3. \***HW** = Study for VOCAL QUIZ!

## TODAY'S ACADEMIC OBJECTIVE

Today you will REMODEL some Chemical Elements by turning BOHR Models into LEWIS Diagrams!

# FRIDAY, FEBRUARY 22<sup>nd</sup>

### **DO NOW**

Know:

Information about Several Gases

| Gas   | Argon<br>(Ar) | Fluorine<br>(F <sub>2</sub> ) | Hydrochloric Acid<br>(HCI) | Oxygen (O <sub>2</sub> ) |
|-------|---------------|-------------------------------|----------------------------|--------------------------|
| Color | colorless     | pale yellow                   | colorless                  | colorless                |

**Asked:** Which gas exists as a Compound?

**A:** Argon

**B:** Fluorine

C: Hydrochloric Acid

#### **TODAY'S PLAN**

- 1. Do and review the **DO NOW** and **Qualitative Prompt (QP)!**
- Today's **QP** = <u>LIST the NAME</u>, <u>CHEMICAL SYMBOL</u>, <u>AND the</u> <u>GROUP Number for each of the 12</u> <u>Chemical Elements on today's</u> <u>VOCAL QUIZ!</u>
- 2. Open books, WORK on today's AO!
- 3. \***HW** = Read & Complete Pg. 192-
- <u> 193!</u>

## TODAY'S ACADEMIC OBJECTIVE

Today you will SUMMON your knowledge of Chemical Element Symbols in order to BLAZE through today's Vocal Quiz!

# THE SGS - STUDY GUIDE SLIDE - CHEMICAL BONDS QUIZ

- Students must KNOW:
- 1. What happens when substances undergo Chemical Reactions, what can cause these Reactions, and WHY do certain Elements prefer to react with each other?
- 2. What is a Valence Electron? How many Valence Electrons does an Atom need to be "happy"?
- 3. How and Why do Atoms become Ions?
- 4. What kinds of Elements form Covalent Bonds & which form Ionic Bonds?
- 5. How are Chemical Formulas & Reactions written, what are the parts of each, and why/how must Reactions be Balanced?

#### **Students must be able to DO:**

- 1. Differentiate between the "Bohr Model", "Electron Cloud", and "Space-Filling" Models for drawing Atoms
- 2. Draw Bohr Models & Lewis Dot Diagrams for Elements in Periods 1-4.
- 3. Compare & Contrast Molecules and Compounds.
- 4. Predict the number of Valence Electrons, Reactivity, and Properties of an Element based off of its Family/Group Name on the Periodic Table.
  - Compare & Contrast Ionic, Covalent, and Metallic Bonding/Compounds and the Properties of Each.

## THE SGS - STUDY GUIDE SLIDE - CHEMICAL BONDS QUIZ

#### • Students must KNOW:

- 1. Atoms are rearranged, since bonds are just broken and reformed. 1. Heat, collisions, concentration, and "catalysts" can cause reactions. Endothermic Reactions take in heat, Exothermic ones release it. Elements prefer to react with an Element that will give them 8 Valence Electrons.
- 2. The outermost Electrons. Atoms need 8 Valence Electrons to be happy aka have a full outermost energy level.
- 3. By losing or gaining Electrons. Atoms do this to become more stable aka to get 8 Valence Electrons. Neutral Atoms have equal numbers of Protons and Electrons. Ions bonded together make "Ionic Compounds".
- 4. Nonmetal + Nonmetal = Covalent. Metal + Nonmental = Ionic
- 5. Formulas show a ratio of Atoms. Formulas can have Subscripts (little # after a symbol), Coefficients (big # before a symbol), and Parentheses. Reactions are written to show "Reactant" chemicals on the left turning into "Products" on the right. Reactions are written as Equations, they use Math Symbols, but the "Yield" Arrow (→) instead of the = sign. Reactions must be balanced due to the Law of Conservation of Energy, and to balance them just add Coefficients before each Atom/Molecule.

#### **Students must be able to DO:**

- 1. Bohr shows the Valence Electrons and can help predict how Atoms bond, the Electron Cloud is the most accurate representation of an Atom, and the Space-Filling is good for showing food molecules.
- 2. See your Jot-Down Notes on drawing Bohr and Lewis Diagrams. Note that both are good for predicting how Atoms will bond.
- 3. Molecule = Two or more Atoms. Compound = Two or more DIFFERENT Atoms. All Compounds are Molecules, but not vice versa.
- 4. Group Number can tell you the number of Valence Electrons. Groups 1-2 have 1-2 Valence Electrons, while 13-18 have the Group Number minus 10. Elements will react to get 8 valence Electrons, and whether or not an Element tends to react depends on its number of Valence Electrons (its easier to react if an Element only needs to gain or lose 1 Valence Electrons. Ex: Alkali Metals in Group 1 are very reactive, Noble gases in Group 18 are not).
  - Ionic tend to conduct electricity when dissolved in water. Covalent involve the sharing of Electrons.

    Metallic are good conductors since the Electrons can move around freely.